

SULTAN QABOOS UNIVERSITY COLLEGE OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BACHELOR OF SCIENCE IN COMPUTER SCIENCE COURSE OUTLINE

I. COURSE INFORMATION				
COURSE CODE	COMP4204			
COURSE TITLE	Advanced Data Structures and Algorithms			
OMAN QUALIFICATION	8			
FRAMEWORK (OQF) LEVEL				
CREDIT HOURS	3			
CONTACT HOURS	4			
PRE-REQUISITES	COMP3203			
Co-Requisites				
EQUIVALENT COURSES				
INCOMPATIBLE COURSES			_	
	☐ University Requirement		☐ University	
	☐College Requirement		☐ College E	lective
COURSE CATEGORY	☐ Department Requirement		☐ Departme	nt Elective
COURSE CATEGORY			☐ Major Elective	
	☐ Specialization Requirement		☐ Specialization Elective	
	☐ Other (specify):			
Course Owner	College: Science		Department:	Computer Science
COURSE OWNER	Center:		Unit:	
DELIVERY MODE	□ Face to Face	☐ Bler	nded	☐ Online
	☐ Lecture		☐ Lecture/La	ıb
	☐ Lecture/Seminar		☐ Lecture/St	udio
	□ Lecture/Tutorial		☐ Lecture/Lab/Tutorial or Seminar	
Covings Twins	□Tutorial		☐ Laboratory (Practical)	
COURSE TYPE	☐ Field or Work Placement		☐ Studio	
	□Seminar		☐ Internship	
	☐ Workshop		☐ Project	
	☐ Thesis		☐ Other (specify):	
LANGUAGE OF INSTRUCTION	English Scale (specify).			
	This course provides a study of a	dvanced	data structures	and algorithms for
	solving a number of fundamental	computi	ing problems. It	t includes coverage of
COURSE DESCRIPTION	advanced methods and techniques for designing algorithms using appropriate			
	data structures and analyzing the	ir efficie	ncy.	

	☐ Augmented Reality		☐ Flipped Classroom			
T	☐ Blended I	Learning		□ Problem-Based Learning		
TEACHING AND LEARNING STRATEGIES	☐ Discovery-Based Learning		☐ Project-Bas	sed Learning	g	
STRATEGIES	☐ Student-Led Learning		⊠ Team-Base	□ Team-Based Learning		
	☐ Work-Based Learning			☐ Other (spec	cify):	
A correct training Coasta and a second	⊠In-term ex	amination(s) (30%)		⊠ Quizzes (1	⊠ Quizzes (10%) □Oth	
ASSESSMENT COMPONENT AND WEIGHT	⊠ Homewor	k assignments (20%)	□Project (%) (spec		(specify):
AND WEIGHT		mination (40%)		☐ Practical/ I	Lab (%)	(%)
TEXTBOOKS AND EDUCATIONAL MATERIAL	Data Structures and Algorithm Analysis, online edition 3.2(Java Version). Clifford A. Shaffer, Department of Computer Science, Virginia Tech. (http://people.cs.vt.edu/~shaffer/Book/) Reference: Algorithms in C++ (Parts 1-4), by Sedgewick, 3rd Ed, Addison Wesley, 1998			inia Tech,		
GRADING METHOD	⊠ A-F Scale		☐ Pass	s/Not Pass	☐ Other (specify):
GRADING METHOD DESCRIPTION						
	Range	Letter Grade		Description		
	90 – 100	А		ptional perfori		
	86 – 89.9	A-		objectives achieved and met in a consistently outstanding manner.		
	81–85.9	B+		Very Good Performance: The majority of		
	77 – 80.9	В		the course objectives achieved (majority		
	73 – 76.9	B-		being at least two-thirds) and met in a		
			consi	stently thorough	h manner.	
A-F GRADING SCALE:	68 – 72.9	C+	Satis	factory Perfor	mance: At l	east most
	64 – 67.9	С		of course objectives have been achieved		chieved
	60 – 63.9	C-		net satisfactorily		
	55 – 59.9	D+		mally Acceptal		
	50 – 54.9	D		se objectives me	et at a minim	nally
	0 40.0			otable level.	www.on.oo. Tl	
	0 – 49.9	F		cceptable perfo ctives not met at		
				otable level.	a miniman,	J

II. SEMESTER INFORMATION				
SEMESTER/YEAR	Spring 2025	SECTION(S)	1	
DAY AND TIME	Section (1): SUN & TUE 12:00-13:50	VENUE(S)	Section (1): D12	
COURSE COORDINATOR	Dr. Farha Al Kharusi	COURSE TEAM		
COORDINATOR OFFICE	0209	OFFICE HOURS	MON & TUE 10:30- 11:30	
COORDINATOR EXTENSION	2228	COORDINA TOR EMAIL	farha@squ.edu.om	

III	III. ALIGNMENT OF COURSE LEARNING OUTCOMES (CLO), PROGRAM LEARNING OUTCOMES (PLO),				
GR	GRADUATE ATTRIBUTES (GA), AND OMAN QUALIFICATION FRAMEWORK (OQF) CHARACTERISTICS				
	CLO	PLO / SO	SQU Graduate	OQF	
			Attributes	Characteristics	
1.	Describe techniques for analyzing the efficiency of an	SO2	A	1	
	algorithm.				
2.	Describe clearly and implement correctly some	SO2	В	1	
	advanced searching algorithms.				
3.	Describe clearly and implement correctly some	SO2	В	1	
	indexing techniques.				
4.	Analyze tradeoffs for selecting appropriate data	SO1, SO2	В	1	
	structures and algorithms for a specific problem.				
5.	Describe clearly and implement correctly some	SO1, SO2	В	1	
	advanced structures such as graphs, non-binary trees,				
	etc.				
6.	Implement correctly Depth-First and Breadth-First	SO2	В	1	
	algorithms on graphs.				
7.	Evaluate the performance of algorithms using Big Oh	SO2	В	1	
	notations and experimental.				
8.	Describe the different patterns of algorithms	SO2, SO6	В	1	
	commonly used for solving real-life problems.				
9.	Explore and use data-structures not covered in the	SO1, SO2	Е	1	
	course.				

IV. Cou	RSE LEARNING OUTCOMES (CLOS) AND ASSESSMENT CRITERIA A	ND METHODS (FOR EACH CLO)
CLO1: I	Describe techniques for analyzing the efficiency of an algorithm.	
ASSESSM	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	ASSESSMENT METHODS
A)	Measure the efficiency of an algorithm using Big-O, Ω , Θ	Hw1, 2, 3, 4, Quiz 1, 2, MT, Final
B)	Find the relationship between two algorithmic functions by using	Hw1, Quiz 1, MT, Final
	the limit.	
C)	Find the growth rate of an algorithm and its basic ADT operation	Hw1, Quiz 1, MT, Final
D)	Describe the best, average and worst cases performance of an	Hw1, Quiz 1, MT, Final
	algorithm	
CLO2: I	Describe clearly and implement correctly some advanced searching alg	gorithms.
ASSESSM	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	ASSESSMENT METHODS
A)	Describe different general tree representations and K-ary trees	Hw2, Quiz 1, MT, Final
B)	Describe graph representations	Hw4, Quiz 2, Final
CLO3 : I	Describe clearly and implement correctly some indexing techniques.	
ASSESSMENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT ASSESSMENT METHODS		
MUST)		
A)	Describe different types of linear indexing	Hw3, Quiz 2, Final
B)	Describe 2-3 tree, B-tree, B+ tree indexing representations, and	Hw3, Quiz 2, Final
	inserting and deleting new records.	
C)	Describing the basic operations inserting and deleting records.	Hw3, Quiz 2, Final
CLO4: A	Analyze tradeoffs for selecting appropriate data structures and algorith	ms for a specific problem.
ASSESSM	IENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	ASSESSMENT METHODS
A)	Analyze the tradeoffs of the different representations of general	Hw2, Quiz 1, MT, Final
	tree	
B)	Analyze the tradeoffs of the different linear indexing	Hw3, Quiz 2, Final
	representations	
C)	Analyze the tradeoffs of the different graph's representations and	Hw4, Quiz 2, Final
	algorithms	
D)	Analyze the tradeoffs of the different sorting algorithms	Hw2, Quiz 1, Final

CLO5:	Describe clearly and implement correctly some advanced structures s	uch as graphs, non-binary trees,		
etc.				
ASSESS	ASSESSMENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST) ASSESSMENT METHODS			
A)	Describe and implement some operation of non-binary tree	Hw2, Quiz1, MT, Final		
B)	Describe the implementation of graph representations	Hw4, Quiz2, Final		
CLO6:	Implement correctly Depth-First and Breadth-First algorithms on grap	hs.		
ASSESS	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	ASSESSMENT METHODS		
A)	Implement the depth-first and the breadth algorithms on graphs	Hw4, Quiz2, Final		
B)	Understand the use of stack and queue on these algorithms	Hw4, Quiz2, Final		
C)	Discuss the running time and the space used in these algorithms	Hw4, Quiz2, Final		
CLO7:	Evaluate the performance of algorithms using Big Oh notations and ex	perimental.		
ASSESS	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	ASSESSMENT METHODS		
A)	Implement an algorithm of a problem and discuss find the	Hw1, Quiz1, MT, Final		
	empirical results on some inputs.			
B) Discuss and justify the empirical results and compared it with Hw1, Quiz1, MT, Final		Hw1, Quiz1, MT, Final		
	asymptotic analysis.			
CLO8:	Evaluate the performance of algorithms using Big Oh notations and ex	perimental.		
ASSESS	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	ASSESSMENT METHODS		
A)	Describe dynamic programming of algorithms commonly used	Hw4, Final		
	such as Knapsack Problem and All-Pairs Shortest Paths Problem			
B)	B) Describe randomized algorithms for solving real-life problems Hw4, Final			
CLO9:	Explore and use data-structures not covered in the course.			
ASSESS	ASSESSMENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST) ASSESSMENT METHOD			
A)	Describe data-structure not covered in the course	Hw4, Final		
B)	B) Describe basic operations of a data-structure not covered in the Hw4, Final			
	course			
C)	Describe the resources used in the data-structure not covered in the	Hw4, Final		
	course.			

WEEK	LECTURES	AND SCHEDULE TOPICS/ SUBJECTS	READINGS/	REMARKS (e.g.,
VVEEK	#	TOPICS/ SUBJECTS	CHAPTERS	ASSESSMENTS)
1		Introduction: The need of Data Structures, Costs and Efficiency, ADT and Data Structures, Problems and Algorithms General Introduction & Mathematical Preliminaries: Set concepts and Notations, Logarithms, Summations, Recursion, Basic Recurrence Relations, Methodological Proof Technique	Chapter 1, 2	HW1, MT, Quiz1,and/or Final
2		Mathematical Proof Techniques Algorithm Analysis: Best, Worst, and Average Cases; Asymptotic Vs.	Chapter 3	HW1, MT, Quiz1, and/or Final
3		Empirical Analysis Non-Binary Trees: General Tree Implementation, K-ary Trees	Chapter 6	HW2, MT, Quiz1, and/or Final
4		Non-Binary Trees: General Tree Implementation, K-ary Trees	Chapter 6	HW2, MT, Quiz1, and/or Final
5		Sorting: Bin-sort and Radix sort Implementations Comparison of Sorting Algorithms	Chapter 7	HW2, MT, Quiz1, and/or Final
6		Searching: Use of Self-organizing Lists and Bit-Vectors	Chapter 9	HW3, MT, Quiz2, and/or Final
7		Indexing: Linear Indexing	Chapter 10	HW3, Quiz2, and/or Final
8		Indexing: Tree-based Indexing	Chapter 10	HW3, Quiz2, and/or Final
9		Graphs: Graph Implementations, Graph traversals.	Chapter 11	HW4, Quiz2, and/or Final
10		Graphs: Shortest- Path Problem	Chapter 11	HW4, Quiz2, and/or Final
11		Graphs: Minimum Spanning Tree	Chapter 11	HW4, and/or Final
12		Patterns of Algorithms: Dynamic Programming, Randomized Algorithms	Chapter 16	HW4, and/or Final
13		Patterns of Algorithms: Dynamic Programming, Randomized Algorithms	Chapter 16	HW4, and/or Final
14		Advanced Tree Structures: Tries and Balanced Trees.	Chapter 13	HW4, and/or Final Final
15		General Revision		

VI. ADDITIONAL INFORMATION (e.g., RUBRICS, etc.)

Assessment Plan:

Item	Date out/In	Sections of Weeks	Marks
Assignment 1	Week 3/5	1 – 2	5%
Assignment 2	Week 5/8	3 – 5	5%
Quiz 1	Week 6 11 March 2025 (Tuesday)	1 – 5	5%
Midterm exam	Week 8 23 March 2025 (Sunday)	1 – 8	30%
Assignment 3	Week 8/11	6 – 8	5%
Quiz 2	Week 12 22 April 2025 (Tuesday)	9 – 11	5%
Assignment 4	Week 11/14	9 - 14	5%
Final	24 th May 2025 (SAT 15:00-18:00)	All	40%

Department's Late Submission Policy:

(a) 1-24 hours: 25% of the mark will be deducted.

(b) > 24 hours: Not accepted.

Department's Policy for Dealing with Cheating:

It is essential that each student solves all programming assignments, lab tests and exams individually unless instructed otherwise, e.g., for group projects. Copying, plagiarism, collusion, switching, and falsification are violations of the university academic regulations. Students involved in such acts will be severely penalized. The department has adopted a firm policy on this issue. A zero mark will be assigned the first time a student is caught involved in copying and his/her name will be added to a watch list maintained by the Head of Department. Further repeated involvements in copying will cause the student to get an F grade in that course. This is in line with the university academic regulations.

VII. STUDENTS RESPONSIBILITIES

It is the student's responsibility to know and comply with all University Academic Regulations relevant to participation in this course. These regulations specifically include attendance requirements and student academic code of conduct.

ACADEMIC	The University expects the students to approach their academic endeavors with
INTEGRITY	the highest academic integrity. Please refer to the Undergraduate Academic
	Regulations.
ADD AND DROP	Students who wish to drop or add the course should review the Undergraduate
	Academic Regulations.
ATTENDANCE	Sultan Qaboos University has a clear requirement for students to attend courses,
	detailed in the Undergraduate Academic Regulations.

ASSESSMENT AND	To ensure the provision of a sound and fair assessment and grading, please review
GRADING	the Undergraduate Academic Regulations.
GRADE APPEAL	Students who wish to appeal their grades should review the Undergraduate
	Academic Regulations.
CLASSROOM	Students are expected to dress professionally during class time as required by the
POLICIES	University. Use of phones or any other electronic devices in the classroom during
	class time is strictly prohibited. Unauthorized use may lead to faculty member
	confiscation of the device for the remainder of the class. Behavior that
	persistently or grossly interferes with classroom activities is considered
	disruptive behavior and may be subject to disciplinary action. A student
	responsible for disruptive behavior may be required to leave the class.
LATE AND MAKE-UP	Students are required to meet the course objectives by submitting coursework no
Work	later than the assigned due date. Students may be allowed to submit late work if
	approved by the course coordinator. Assignments submitted after the due date
	may be penalized.
MISSED	All quizzes, tests, clinical evaluations, and exams must be completed by the date
EVALUATIONS	they are assigned. If a quiz, test, or exam is missed due to a documented
	emergency situation (e.g., medical emergency, death in the immediate family), it
	is the student's responsibility to contact the instructor.
OTHER	

Course Outline Appendix

1. PROGRAM LEARNING OUTCOMES / STUDENT OUTCOMES

- 1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
- 2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- 3. Communicate effectively in a variety of professional contexts.
- 4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
- 5. Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.
- 6. Apply computer science theory and software development fundamentals to produce computing-based solutions.

2. SQU Graduate Attributes SQU Graduate Attributes and Competencies for Undergraduate Studies

GRADUATE ATTRIBUTES	GRADUATE COMPETENCIES FOR UNDERGRADUATE STUDIES
A. Cognitive Capabilities: The	1. Demonstrates familiarity and works with advanced
graduate has sufficient general and	specialized knowledge in the area of specialization.
specialized theoretical knowledge that	2. Demonstrates a general understanding of the relationship
enables him/her to deal well with	of advanced specialized knowledge with knowledge in
his/her specialty and other related	other relevant professional fields and aspects.
fields.	3. Demonstrates a comprehensive understanding of the
	theories, principles, and methods used in his/her specialty,
	and how to create and apply new knowledge.
	4. Demonstrates general knowledge of the legal environment
	and necessary relevant regulatory frameworks.
	5. Shows awareness of contemporary literature and research.
B. Skill and Professional	1. Applies concepts, theories, and investigative methods to
Capability: The graduate has	synthesize and interpret information to evaluate
sufficient skill and practical	conclusions.
experience that enables him/her to	2. Applies appropriate research methods and techniques and
perform all tasks related to the	employs digital knowledge
specialization and other related fields.	3. Evaluates and critiques information independently
	4. Uses cognitive and technical skills to analyze complex
	issues and develop appropriate solutions.

	5.	Initiates new ideas or processes in the professional, educational or research context.
C. Effective Communication: The	1.	Explains, presents, and adapts information to suit the
graduate has the ability to		recipients.
communicate effectively with others	2.	Employs appropriate information and communication
to achieve the desired results		technology to collect and analyze information.
D. Autonomy and Leadership: The	1.	Performs advanced professional activities independently.
graduate has the ability to lead, make	2.	Demonstrates leadership skills.
decisions and take responsibility for	3.	Takes professional responsibility.
decisions.	4.	Assumes full accountability for the tasks and their output.
E. Responsibility and Commitment:	1.	Manages time and other resources assigned to
The graduate appreciates the		accomplishing tasks effectively and responsibly.
importance of available resources and	2.	Demonstrates effective practices when working in teams.
deals with them effectively and is	3.	Demonstrates advanced levels of understanding of values
committed to the ethics of the		and ethics relevant to the specialization, profession and
profession and society.		local and international society and promotes them among others.
	4.	Works within the professional, institutional, and specialization guiding frameworks and strategic plans.
	5.	Interacts with community affairs positively and preserves national identity.
F. Development and Innovation:	1.	Demonstrates the ability to independently manage learning
The graduate has a passion for		tasks, with an awareness of how to develop and apply new
development and innovation in the		knowledge.
field of specialization.	2.	Utilizes specialized knowledge and skills for
		entrepreneurship.
	3.	Utilizes creative and innovative skills in the field of
		specialization.

3. **OQF Characteristics**

- 1. Knowledge
- 2. Skills
- 3. Communication, Numeracy, and Information and Communication Technology Skills.
- 4. Autonomy and Responsibility
- 5. Employability and Values
- 6. Learning to learn